LOYOLA COLLEGE (AUTONOMOUS), CHENNAI – 600 034 M.Sc. DEGREE EXAMINATION – MATHEMATICS FIRST SEMESTER – NOVEMBER 2023 PMT1MC03 – ORDINARY DIFFERENTIAL EQUATIONS			
Date: 06-11-2023 Dept. No. Max. : 100 Marks Time: 01:00 PM - 04:00 PM			
	SECTION A – K1 (CO1)		
	Answer ALL the questions $(5 \times 1 = 5)$		
1	Answer the following		
a)	State Lipschitz condition.		
b)	Define linear dependence solutions.		
c)	Describe the systems of first order equations.		
d)	Define regular singular point.		
e)	State Sturm's separation theorem.		
SECTION A – K2 (CO1)			
	A normal ATT the questions $(5 \times 1 - 5)$		
2	Answer ALL the questions (3 x 1 - 3) Choose the connect answer (3 x 1 - 3)		
∠ a)	The second approximate solution of $x' = tx$, $x(0) = 1$, as per Picard's successive approximation		
- ,	method		
	(i) $1 + t$ (ii) $1 + \frac{t}{2}$ (iii) $1 + t^2$ (iv) $1 + \frac{t^2}{2}$		
b)	Which of the following is the solution of the equation $x'' + 4x = 0$? (i) $c_1e^{2t} + c_2e^{-2t}$ (ii) $c_1e^{2it} + c_2e^{-2it}$ (iii) $c_1cos2t + c_2sint$ (iv) none of these		
c)	Let Φ be a fundamental matrix for the system $x' = A(t)x$. Then $\Phi(t + s) =$ (i) $\Phi(t) + \Phi(s)$ (ii) $\Phi(t) - \Phi(s)$ (iii) $\Phi(t)\Phi(s)$ (iv) $\Phi(t)/\Phi(s)$		
d)	The Bessel function (p is an integer), $J_{-p}(t) =$ (i) $J_p(t)$ (ii) $-J_p(t)$ (iii) $-J_p(n)$ (iv) none of these		
e)	The equation $x'' + x = 0$ is (i) oscillatory (ii) non-oscillatory (iii) neither (i) nor (ii) (iv) both (i) and (ii)		
SECTION B – K3 (CO2)			
	Answer any THREE of the following(3 x 10 = 30)		
3	Apply the method of variation of parameters to find the solution of $x' + a(t)x = b(t)$.		
4	Use Wronskian to classify the following sets of functions as linearly independent or dependent: (i) <i>sint</i> , <i>sin2t</i> , <i>sin3t</i> on $I = [0,2\pi]$, (ii) 1, <i>t</i> , t^2 , t^3 on <i>R</i> .		
5	Show that $\Phi(t) = \begin{bmatrix} e^{-3t} & te^{-3t} & t^2e^{-3t}/2 \\ 0 & e^{-3t} & te^{-3t} \\ 0 & 0 & e^{-3t} \end{bmatrix}$ is a fundamental matrix for a linear system $x' = A(t)x$		

	where $x = \begin{bmatrix} x_1 \\ x_2 \\ x_3 \end{bmatrix}, A = \begin{bmatrix} -3 & 1 & 0 \\ 0 & -3 & 1 \\ 0 & 0 & -3 \end{bmatrix}.$		
6	For distinct values of <i>n</i> and <i>m</i> , prove that $\int_{-1}^{1} P_n(t) P_m(t) dt = 0$.		
7	Let r_1, r_2 and p be continuous functions on (a, b) and $p > 0$. Assume that x and y are real solutions of		
	$(px')' + r_1x = 0$ and $(py')' + r_2y = 0$ respectively on (a, b) . If $r_2(t) \ge r_1(t)$ for $t \in (a, b)$, show		
	that between any two consecutive zeros t_1, t_2 of x in (a, b) , there exists at least one zero of y in		
	$[t_1, t_2].$		
SECTION C – K4 (CO3)			
	Answer any TWO of the following(2 x 12.5 = 25)		
8	Derive the various solutions of second order homogeneous differential equation with constant coefficients		
9	Solve the initial value problem $r'' = 2r' + r = 0$, $r(0) = 0$, $r'(0) = 1$ by converting into system of		
9	equations. $-2x^2 + x = 0, x(0) = 0, x(0) = 1$ by converting into system of		
10	Obtain the integral representation of Bessel function.		
11	Explain the Hille-Wintner comparison theorem.		
	SECTION D – K5 (CO4)		
	Answer any ONE of the following(1 x 15 = 15)		
12	Let $x' = A(t)x$ be a linear system where $A: I \to M_n(R)$ is continuous. Suppose a matrix Φ satisfies		
	the system, evaluate $(\det \Phi)'$ and discuss that if Φ is a fundamental matrix if and only if $\det \Phi \neq 0$.		
13	Determine the solution of the Legendre equation $(1 - t^2)x'' - 2tx' + p(p+1)x = 0$.		
	SECTION E – K6 (CO5)		
	Answer any ONE of the following(1 x 20 = 20)		
14	Develop the conditions for the existence of a unique solution for the first order initial value problem		
	$x' = f(t, x), x(t_0) = x_0$		
15	Suppose that there are two types of living things that need the same type of food supply to survive.		
	Create a mathematical model to explain this occurrence, and explain how the model could be used to		
	predict the extinction of any particular species.		
	&&&&&&&&		
1			
1			
1			